Jika [tex]x[/tex] memenuhi persamaan [tex]1+\sqrt{1+x\sqrt{x^{2} -24} } = x[/tex], maka nilai [tex]x^{2} -x[/tex] adalah ...
A. 5
B. 7
C. 20
D. 42
E. 56
wajib menggunakan cara, ngasal report
[tex] \tt1+\sqrt{1+x\sqrt{x^{2} -24} } = x[/tex]
[tex] \tt\sqrt{1+x\sqrt{x^{2} -24} } = x - 1[/tex]
[tex] \tt(\sqrt{1+x\sqrt{x^{2} -24} } {)}^{2} = (x - 1 {)}^{2} [/tex]
[tex] \tt1+x\sqrt{x^{2} -24} = {x}^{2} - 2x + 1[/tex]
[tex] \tt \: x\sqrt{x^{2} -24} = {x}^{2} - 2x + 1 - 1[/tex]
[tex] \tt \: x\sqrt{x^{2} -24} = {x}^{2} - 2x [/tex]
[tex] \tt \: x\sqrt{x^{2} -24} = {x}^{2} - 2x \: \: \: \rightarrow \: \: bagi \: ruas \: dengan \: x[/tex]
[tex] \tt \: \sqrt{x^{2} -24} = x - 2[/tex]
[tex] \tt \:x^{2} -24 = (x - 2 {)}^{2} [/tex]
[tex] \tt \: \cancel{x^{2}} -24 = \cancel{ {x}^{2}} - 4x + 4[/tex]
[tex] \tt -24 = - 4x + 4[/tex]
[tex] \tt 24 = 4x - 4[/tex]
4x = 24 + 4
4x = 28
x = 28/4
x = 7
...
Maka:
x² - x
= 7² - 7
= 7(7 - 1)
= 7(6)
= 42
- opsi D